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Abstract—A common technique for dealing with the curse
of dimensionality in approximate dynamic programming is to
use a parametric value function approximation, where the value
of being in a state is assumed to be a linear combination
of basis functions. Even with this simplification, we face the
exploration/exploitation dilemma: an inaccurate approximation
may lead to poor decisions, making it necessary to sometimes
explore actions that appear to be suboptimal. We propose
a Bayesian strategy for active learning with basis functions,
based on the knowledge gradient concept from the optimal
learning literature. The new method performs well in numerical
experiments conducted on an energy storage problem.

I. INTRODUCTION

Consider an infinite-horizon dynamic programming problem
where the value V (S) of a state S ∈ S is given by Bellman’s
equation,

V (S) = max
x∈X

IE [C (S, x,W ) + γV (S′) |S, x] (1)

and the optimal policy consists of making the decision that
maximizes the right-hand side of (1) for the current state. The
quantity C (S, x,W ) denotes a reward (possibly depending on
a random variable W ) received for taking action x while in
state S. The state S′ = SM (S, x,W ) denotes the next state
of the dynamic program after taking this action; the transition
function SM is sometimes referred to by the name “system
model” in the literature. The expectation in (1) is thus taken
over the distribution of W . If the number of states and actions
is small, we can use the value iteration algorithm [1] to find
the true value function V by iteratively solving

V n (S) = max
x∈X

IE
[
C (S, x,W ) + γV n−1 (S′) |S, x

]
∀S ∈ S.

(2)
However, it is easy to envision problems where this algorithm
is computationally intractable. We are particularly interested
in problems where the state space S is continuous. This makes
it impossible to solve (2) for all S ∈ S , but it may also be
impossible to compute the expectation over the distribution of
W , even for a fixed state S.

Consider a simple energy storage problem where we can buy
energy at the spot price, use it to charge a battery, then wait
until the price goes up and discharge back to the grid. Energy
prices are famously volatile, and there is an entire literature
that uses stochastic differential equations (essentially stock
price processes) to model them [2]. The state variable in this
problem must consist of all the information we need to make
a decision, which necessarily must include the current price
of energy. The price is a continuous quantity; furthermore, the

transitions between prices are also continuous (if we use an
SDE model). Thus, even the simplest version of this problem
immediately runs into the well-known curse of dimensionality.

In this situation, we can make use of techniques from
reinforcement learning [3], neuro-dynamic programming [4],
or approximate dynamic programming [5], [6]. One very
popular class of methods of this sort is known as approximate
value iteration. Given that we are in a state Sn, we first
compute an approximate observation

v̂n = max
x

C (Sn, x) + γV n−1
(
SM,x (Sn, x)

)
(3)

where V n−1 is an approximation of the true value function
V , and Sx,n = SM,x (Sn, x) is the post-decision state. This
concept, first introduced by [7] and extensively discussed in
[6], describes the change in our state immediately after we
have made a decision, but before any exogenous information
has been observed. Thus, SM,x is a deterministic function of
state and action that allows us to avoid having to compute the
expectation in (2). Having calculated (3), we view v̂n as an
observation of the value of being in the previous post-decision
state Sx,n−1, which we visited just before the transition to Sn.

In this paper, we consider a particular class of value function
approximations (VFAs), namely the parametric representation

V (S) =

F∑
i=1

θiφi (S) (4)

for appropriately chosen basis functions φi : S 7→ R. The ba-
sis functions themselves can be arbitrary (though a theoretical
analysis may require some additional conditions), but the value
of the state is assumed to be linear in the parameter vector θ.
This is one of the most enduring and popular classes of value
function approximations (see [8] and [9] for early treatments),
and still offers modeling and theoretical challenges to this
day [10], [11]. Its main advantage is its ability to reduce the
problem of approximating a value function to the problem of
estimating a finite and relatively small number of parameters.

Despite this benefit, approximate value iteration is still
vulnerable to the exploration/exploitation dilemma. The choice
of x that maximizes (3) depends on the current approximation
V n−1. If the approximation is inaccurate, we run the risk of
making poor decisions by relying on it. It may be occasionally
necessary to take an action that seems to be suboptimal, on
the chance that it might turn out better than expected, or
that it might take us to a new state that we have not visited
before. In this case, we sacrifice some immediate gain, but we



collect information that allows us to make better decisions
later on. Popular heuristics for exploration include interval
estimation [12], as well as the ε-greedy and soft-max methods
[3]. More sophisticated, information-based heuristics include
the `-learning method of [13].

The field of optimal learning focuses on the problem of
collecting information efficiently. In the ranking and selection
problem [14] and its online variant, the multi-armed bandit
problem [15], there is a finite set of alternatives whose values
are unknown. The goal is to find the best alternative, possibly
maximizing rewards in the process. We use a Bayesian belief
structure to represent our uncertainty about the unknown val-
ues, and we have the ability to refine our beliefs by collecting
noisy samples of the values of individual alternatives. We are
able to choose which alternatives we want to sample; the goal
is to make these measurement decisions efficiently.

Because these models focus exclusively on a changing state
of belief, they do not allow for a physical state variable (such
as the amount of energy in a battery) that affects our ability
to make decisions now and in the future, a key feature of
dynamic programming problems. However, there have been
attempts to incorporate optimal learning into ADP, the first
being the work by [16]. Two types of Bayesian approaches
emerged: one that places a Dirichlet prior on the transition
probabilities of a dynamic program [17]–[20], and one that
places a Gaussian prior on the true value function itself [21]–
[23]. The second approach tends to result in faster computation
times. Additionally, if a multivariate Gaussian or Gaussian
process prior is used, we are able to account for similarities
between states. For example, in the energy storage problem,
an observation of a single state should also provide some
information about other states with similar price values.

In this paper, we apply a particular type of optimal learning
technique known as the knowledge gradient (KG) method
(studied by [24], [25] for ranking and selection and by [26],
[27] for multi-armed bandits) to ADP with the parametric
value function approximation given in (4). The KG technique
has been used by [28] for Dirichlet priors on transition
probabilities, and by [29] for multivariate Gaussian priors on
the value function, performing well in both settings. However,
[29] uses a lookup table for the value function approximation,
which incurs high computational costs when the state space
is large. We extend this idea to the case of parametric
approximations by making a connection with [30], which uses
a parametric model for ranking and selection. The resulting
method performs well, while being substantially faster to
compute than the original KG-ADP method of [29].

Section II describes the Bayesian model used to learn
the parameters of the VFA. Section III lays out the KG
algorithm for this setting. In Section IV, we present numerical
results testing KG on a version of the energy storage problem
described above. Finally, Section V concludes the paper.

II. BAYESIAN MODEL FOR PARAMETRIC VFAS

We consider a classical infinite-horizon problem with state
space S, action space X , and a discount factor γ ∈ (0, 1). We

have the standard objective function

sup
π

∞∑
n=0

γnC (Sn, Xπ,n (Sn)) ,

where Xπ,n is the decision rule associated with the policy π.
The post-decision state Sx,n = SM,x (Sn, x) is a deterministic
function of state and action. The next pre-decision state
Sn+1 = SM,W

(
Sx,n,Wn+1

)
is determined randomly using

the exogenous information Wn+1. Let Sx be the space of post-
decision states. We define our value function approximation
(and basis functions) around the post-decision state:

V (Sx,n) =

F∑
i=1

θiφi (Sx,n) = φ (Sx,n)
T
θ.

We assume that the space Sx is smaller than S, but still
continuous. By modeling our state space in this way, we
avoid the difficult expectation in (2) by using a deterministic
optimization problem (3) to make decisions.

Recall that the quantity v̂n from (3) is treated as an
observation of the unknown value V

(
Sx,n−1

)
of the previous

post-decision state Sx,n−1. Let Y n =
(
v̂1, ..., v̂n

)
be a vector

of the observations made up to time n, and define a matrix

Xn =

 φ1
(
Sx,0

)
... φF

(
Sx,0

)
... ... ...

φ1
(
Sx,n−1

)
... φF

(
Sx,n−1

)


containing the corresponding basis function values for each
post-decision state that we observed. In classical linear re-
gression, the best estimate θn is given by

θn =
[
(Xn)

T
Xn
]−1

(Xn)
T
Y n.

Letting Bn =
[
(Xn)

T
Xn
]−1

, we can also compute θn

recursively [6] using the equations

θn = θn−1

−
v̂n − φ

(
Sx,n−1

)T
θn−1

1 + φ (Sx,n−1)
T
Bn−1φ (Sx,n−1)

Bn−1φ
(
Sx,n−1

)
(5)

and

Bn = Bn−1 −
Bn−1φ

(
Sx,n−1

)
φ
(
Sx,n−1

)T
Bn−1

1 + φ (Sx,n−1)
T
Bn−1φ (Sx,n−1)

. (6)

In our Bayesian model, we place a multivariate Gaussian
prior with mean vector θ0 and covariance matrix C0 on the
vector θ of unknown parameters. This induces a multivariate
Gaussian distribution of belief on the value function V ,
such that IEV (S) = φ (S)

T
θ0 and Cov (V (S) , V (S′)) =

φ (S)
T
C0φ (S′). We now make a critical assumption about

the observations v̂n used to fit our regression model.
Assumption 1: The observation v̂n follows the distribution

N
(
V
(
Sx,n−1

)
, σ2
ε

)
and is independent of past observations.

It is easy to see that this assumption does not hold in
most practical applications. In fact, v̂n = maxx C (Sn, x) +
γφ (Sx,n)

T
θn−1 explicitly depends on the previous approxi-

mation θn−1, which introduces bias into the observation. This



quantity is also unlikely to have a Gaussian distribution, and
the variance σ2

ε of the noise is certainly not known in most
cases. However, Assumption 1 is standard in previous work
on Bayesian dynamic programming [21]. Even non-Bayesian
ADP methods often make independence assumptions (e.g. the
OSA stepsize rule of [31]). We follow this assumption in order
to get easily computable updating rules for our parameters. We
treat σ2

ε as a tunable parameter.
From Assumption 1, it follows that the covariance matrix

of Y n is given by σ2
εI , where I is the identity matrix.

Consequently, by the Gauss-Markov theorem [32], the pos-
terior distribution of θ given the observations v̂1, ..., v̂n is
multivariate Gaussian with the mean vector given by the
best linear unbiased estimator θn = Bn (Xn)

T
Y n and the

covariance matrix given by Cn = σ2
εB

n. We can now easily
rewrite (5) and (6) to obtain the Bayesian updating equations

θn = θn−1

−
v̂n − φ

(
Sx,n−1

)T
θn−1

σ2
ε + φ (Sx,n−1)

T
Cn−1φ (Sx,n−1)

Cn−1φ
(
Sx,n−1

)
(7)

and

Cn = Cn−1 −
Cn−1φ

(
Sx,n−1

)
φ
(
Sx,n−1

)T
Cn−1

σ2
ε + φ (Sx,n−1)

T
Cn−1φ (Sx,n−1)

. (8)

For simplicity, we suggest starting with a diagonal matrix for
C0, where the entries represent our beliefs about a possible
range of values for the true parameters. Even if the parameters
are assumed to be independent initially, the updating equations
(7) and (8) will quickly populate the off-diagonal entries with
empirical covariances. The quantity V n (Sx) = φ (Sx)

T
θn

represents our estimate of the value of a post-decision state
given the VFA at time n.

III. THE KNOWLEDGE GRADIENT ALGORITHM FOR
PARAMETRIC VFAS

Under the Bayesian model, we know that every decision
will change our beliefs (θn, Cn) through (7) and (8). The
knowledge gradient (KG) concept can be viewed as a way
to incorporate the impact of a decision on our beliefs into
the decision-making process itself. While we do not know the
exact outcome of our decision in advance, our Bayesian model
gives us a way to represent our uncertainty about that outcome,
conditional on the information we already have at our disposal.
The KG idea uses this precise representation of uncertainty to
compute the value of the new information contributed by a
decision to our ability to solve the problem.

If we make our decision based solely on the existing
approximation (a strategy known as pure exploitation), we
compute the decision rule

XExp,n (Sn) = arg max
x

Qn (Sn, x) (9)

where

Qn (Sn, x) = C (Sn, x) + γφ (Sx,n)
T
θn.

The KG decision rule replaces the downstream value
φ (Sx,n)

T
θn with an expectation of the future estimate of the

downstream value that we will obtain as a result of making
the decision x, resulting in the decision rule

XKG,n (Sn) = arg max
x

QKG,n (Sn, x) (10)

where

QKG,n (Sn, x) = C (Sn, x) + γIEnxV
n+1 (Sx,n) . (11)

In this expression, IEnx is a conditional expectation given the
current VFA (characterized by θn and Cn), as well as the
decision to take action x next.

We will first summarize the KG logic from [29], and then
show how it can be adapted to deal with the parametric case.
Note that the change in our beliefs from θn to θn+1 will
take place only after we have observed the quantity v̂n+1

from the pre-decision state Sn+1. We can expand (11) into
an expression

QKG,n(Sn, x)=C(Sn, x)

+γ
∑
Sn+1

P
(
Sn+1|Sx,n

)
IEnxmax

x′
Qn+1

(
Sn+1,x′

)
(12)

The KG approach assumes that the next decision x at time n
will be the last decision to impact our beliefs. In this case,
all decisions starting at time n+ 1 should be made using the
final regression estimate θn+1. However, from the point of
view of time n, this estimate is random, and so Qn+1 is a
random variable as well. It can be shown that the conditional
distribution of the vector θn+1 at time n can be written as

θn+1 ∼ θn +
Cn−1φ (Sx,n)√

σ2
ε + φ (Sx,n)

T
Cnφ (Sx,n)

Z, (13)

where Z ∼ N (0, 1). To see this, we can observe that θn+1 is
conditionally Gaussian by Assumption 1 together with (7),
then compute the conditional mean vector and covariance
matrix. Note that Z is a scalar random variable, common to
the conditional distributions of all the components of θn+1.
The conditional distribution of any Sx ∈ Sx can be found by
multiplying both sides in (13) by φ (Sx), yielding

V n+1 (Sx) ∼ V n (Sx) +
φ (Sx)

T
Cn−1φ (Sx,n)√

σ2
ε + φ (Sx,n)

T
Cnφ (Sx,n)

Z.

(14)
The quantity φ (Sx)

T
Cn−1φ (Sx,n) is precisely

Covn (Sx, Sx,n). Note that Z is still scalar and common to
all conditional distributions of V (Sx) for Sx ∈ Sx.

Using equation (14), the last term in (12) can be written as

IEnx max
x′

Qn+1
(
Sn+1, x′

)
= IEmax

x′
(anx′ + bnx′Z) (15)

where

anx′ = C
(
Sn+1, x′

)
+ γV n

(
SM,x

(
Sn+1, x′

))
,

bnx′ = γ
φ
(
SM,x

(
Sn+1, x′

))T
Cn−1φ (Sx,n)√

σ2
ε + φ (Sx,n)

T
Cnφ (Sx,n)

.



We then apply the work by [33] to compute the right-hand
side of (15) exactly via the formula

IEmax
x′

(anx′ + bnx′Z) =
(

max
x′

anx′

)
+

∑
y∈A

(
bny+1 − bny

)
f (− |cy|) .

In this expression, A is the set of all y for which there exist
numbers cy−1 < cy satisfying y = arg maxx′ anx′ + bnx′z for
z ∈ (cy−1, cy). In other words, the numbers cy are the break-
points of the piecewise linear function inside the expectation
in (15), arranged in increasing order, and the numbers by are
the corresponding slopes of that piecewise linear function. The
function f is defined as f (z) = zΦ (z) + φ (z), where φ and
Φ denote the standard Gaussian pdf and cdf.

The knowledge gradient is defined to be

νKG,n
(
Sx,n, Sn+1

)
= IEmax

x′
(anx′ + bnx′Z)−max

x′
anx′

=
∑
y∈A

(
bny+1 − bny

)
f (− |cy|) .

Since anx′ = Qn
(
Sn+1, x′

)
, this quantity can be viewed as the

expected improvement in our estimate of the value of being
in state Sn+1, obtained as a result of making a transition
from Sx,n to Sn+1. We can substitute the definition of the
knowledge gradient back into (12) to obtain∑

Sn+1

P
(
Sn+1|Sx,n

)
IEnx max

x′
Qn+1

(
Sn+1, x′

)
=

∑
Sn+1

P
(
Sn+1|Sx,n

)
max
x′

Qn
(
Sn+1, x′

)
+

∑
Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
.

In ADP, the value of a post-decision state is defined to be
the expected value of the next pre-decision state, with the
expectation taken over the random transition from Sx,n to
Sn+1. Therefore, we can write∑

Sn+1

P
(
Sn+1|Sx,n

)
max
x′

Qn
(
Sn+1, x′

)
≈ V n (Sx,n)

and (10) reduces to

XKG,n (Sn)=max
x

C (Sn, x) + γV n (Sx,n)

+
∑
Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
(16)

This final form looks remarkably similar to the pure exploita-
tion rule of (9). We maximize the combination of the one-
period reward plus the downstream value, but now we add
a new term representing the expected value of information.
Under the KG policy, we are more likely to choose a decision
that has a high value according to our current approximation,
but we are also more likely to choose a decision with a
high value of information (typically corresponding to high
uncertainty, that is, high values of φ (Sx,n)

T
Cnφ (Sx,n) and

relevant covariances).

The value of information for a fixed transition to Sn+1 can
be computed exactly using the procedure developed in [33].
In our setting, the number of breakpoints in the piecewise
linear function in (15) depends on the size of the action space,
not the size of the state space. As long as we can compute
the basis vector φ (Sx) inexpensively (for example, if the
basis functions are continuous in the state variable), we can
construct the components anx′ and bnx′ of the KG formula as
we need them, with no need for a basis matrix (denoted by
X in [30]) where the number of rows equals the number of
states. We are able to handle continuous state spaces, provided
that the action space is reasonably small.

If the state space is continuous, the sum in (16) becomes
an integral that is difficult to compute. In many problems,
we may not even know the probability distribution of the
transition from Sx,n to Sn+1, making it difficult to find
transition probabilities. As in [29], we suggest using Monte
Carlo simulation to overcome this issue. This approach is
suited to a model-based dynamic programming setting, where
it is possible to simulate the real-world problem, and the
complexity of the model and state space is the main obstacle
to finding an optimal policy. We can simulate K transitions
out of Sx,n, then calculate an approximate KG factor∑

Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
≈ 1

K

K∑
k=1

νKG,n
(
Sx,n, Sn+1

k

)
, (17)

where Sn+1
k = SM,W

(
Sx,n,Wn+1 (ωk)

)
for the kth sample

path generated. Finally, the policy specified by

XOff,n (Sn) = arg max
x

∑
Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
represents a variation of KG that is more suitable for offline
problems, where we can train the VFA in a simulator, with no
economic cost for making mistakes (thus with more flexibility
to explore), before using it in the real world.

The algorithm proposed above uses the KG concept first
proposed in [29]. The computational steps are largely the
same, and the parametric model comes into play only when
we compute the components anx′ and bnx′ used in the KG
formula. However, this difference has a profound effect on the
computational cost of the algorithm. By using a parametric
model where the number of parameters is typically much
smaller than the number of states, we only need to maintain
a covariance matrix of size F ×F . In particular, the updating
equations (7) and (8) will require much less effort to compute.
Furthermore, we no longer need to discretize the state space,
because our VFA is continuous, and we also do not need to
specify a full covariance structure when we create the prior
C0. Instead, we can start with a diagonal covariance matrix,
and our updating procedure will add covariances automatically.
We discuss and illustrate these issues in the next section.



IV. NUMERICAL EXPERIMENTS

We evaluate the performance of the parametric KG policy
on the energy storage problem considered in [29]. Suppose
that we have a storage device, such as a battery. We define
Rn to be the amount of energy in the battery (the “charge
level”), as a percentage of total capacity, which is taken to
be 35 MWh. We allow Rn to take integer values between 0
and 100. The spot price Pn of energy follows a geometric
Ornstein-Uhlenbeck process [34], where

log
Pn+1

Pn
= −α log

Pn

P 0
+ σZn+1 (18)

with Zn+1 ∼ N (0, 1). We use the values α = 0.0633 and
σ = 0.2, along with an initial price P 0 = 30. The decision
xn is an integer from −50 to 50 representing how much to
charge (xn ≥ 0) or discharge (xn < 0) the storage device.
Not every value from −50 to 50 is available for a given state;
for example, if the battery is empty, the possible actions range
from 0 to 50. The post-decision state is given by

Rx,n = Rn + xn,
P x,n = Pn,

whereas the next pre-decision state is obtained by letting
Rn+1 = Rx,n and generating Pn+1 using (18). The single-
period reward is given by C (Sn, xn) = −Pnxn, the cost
incurred or revenue obtained as a result of our decision. Our
objective is to use our storage device to play the spot market
and maximize discounted revenue (γ = 0.99) over time.

The spot price Pn is continuous, and thus we can-
not solve the problem exactly. We use a parametric VFA
with polynomial basis functions given by φ (Sx,n) =(

1, Rx.n, (Rx,n)
2
, P x,n, (P x,n)

2
, Rx,nP x,n

)
. This represen-

tation is much more compact than the discretization of the
state space used in [29]. We run the KG policy with the Monte
Carlo approximation from (17), with K = 20.

For each sample path, we begin with a constant prior
θ01 = 15000, θ02, ..., θ

0
6 = 0 and a diagonal covariance matrix

C0 with all diagonal elements equal to 5002. We chose an
optimistic value for θ0 heuristically, to reduce the likelihood of
getting stuck in a subset of the state space (see Sec. 4.7 of [6]).
The measurement noise was chosen to be σ2

ε = 20002. We
found that the behaviour of the learning model was sensitive
to the relationship between C0 and σ2

ε . Though we obtained
good results with the parameter values given above, other
parameter settings caused the values of θn to oscillate in
a volatile manner. This problem is not specific to the KG
policy (we observed it even for a generic ε-greedy policy),
and appears to be endemic to parametric VFAs. Despite the
risk of divergence, parametric VFAs remain extremely popular
due to their ability to handle large state spaces [35].

We compared both offline and online variants of KG with a
tuned ε-greedy policy with ε = 0.05. The online variant is the
one given in (16), where we balance the existing VFA against
the value of information when we make a decision. The offline
variant simply chooses the action with the greatest value of

TABLE I: Means and standard errors for the storage problem.

Offline objective Online objective
Mean Avg. SE Mean Avg. SE

Offline KG (lookup) 210.4283 0.33 -277.3786 15.90
Online KG (lookup) 79.3624 0.23 160.2816 5.43
Offline KG (param.) 1136.2027 3.54 -342.2321 19.96
Online KG (param.) 871.1285 3.15 44.58 27.71
ε-greedy (param.) -475.5430 2.30 -329.0319 25.3107

information. Offline decision-making is more suitable in a
setting where we can use a simulator to train our VFA for some
time before applying it to the real-world problem. If there is
no real economic cost for making a decision, we can afford to
do more exploration. However, if we are attempting to train
our VFA while solving the problem in real time, we can use
the more conservative online policy. In addition to offline and
online KG with basis functions, we also implemented a version
of KG with a lookup-table approximation, originally proposed
in [29], where this policy was shown to perform well against
other lookup-table methods. We use this VFA (together with
a distance-based covariance structure) as a benchmark for our
parametric model.

Table I reports the online and offline performance of the
different policies. Although the parametric model is sensitive
to the choice of measurement noise and prior variance, tuning
these parameters allows us to obtain much better offline perfor-
mance than with a lookup table approximation. Even online
version of KG, which does less exploration than the offline
version, outperforms its lookup-table counterpart by an order
of magnitude in the offline setting. Offline KG achieves even
better offline performance. The ε-greedy policy loses money
in both online and offline settings, showing that intelligent
exploration continues to be important even in the parametric
model, where any decision updates the entire parameter vector.

Furthermore, using a parametric VFA allows for substantial
computational savings. Table II reports the time in seconds
required to compute KG factors for all possible decisions in
the first time step, as well as the time required for Bayesian
updating, using both lookup-table and parametric VFAs. We
see that KG factors are more expensive to compute in the
parametric case, because the covariances in (14) are now
calculated via matrix multiplications. In the case of lookup
tables, they are stored in a covariance matrix, requiring no
additional calculations to access. However, the lookup-table
case requires us to update a large covariance matrix in each
time step, whose size grows if we make finer discretizations of
the state space. In the parametric case, we only update a small
F × F covariance matrix, making the Bayesian update much
faster. Altogether, the computational cost of the KG algorithm

TABLE II: Computational effort required for KG and Bayesian
updating.

KG Updating
Lookup 0.0247s 0.6817s
Param. 0.2048s 0.0588s



(a) Online case. (b) Offline case.

Fig. 1: Performance of KG with a lookup table VFA.

with parametric VFAs is only 37% of the cost of KG with
lookup tables. The parametric case also requires us to store
much less data in memory.

At the same time, Table I suggests that KG performs better
with the lookup table approximation in an online setting.
We can examine this issue more closely by considering the
performance of KG as a function of the number N of time
steps, in both offline and online settings, for both types of
VFAs. Figure 1 shows the performance of KG with a lookup
table, and Figure 2 covers the parametric case. The parametric
case induces much more exploration in the early stages of the
problem. In the first 10 iterations, parametric KG suffers a
sharp drop in online performance. However, the information

collected in these iterations allows us to make much better
decisions later on. The rate of improvement in the online
performance of online KG is much greater in the parametric
case (Figure 2a) than for the lookup table (Figure 1a), but the
heavy exploration in the beginning incurs a greater cost.

Because online KG explores heavily in the first 10 iterations
in the parametric case, it also produces a good VFA. For the
first 70 iterations, it actually yields better offline performance
than offline KG. Offline KG spends this time making drasti-
cally different decisions, resulting in volatile changes in the
VFA and the offline performance. However, after 70 iterations,
the information collected in this manner begins to pay off,
resulting in better offline performance.

(a) Online case. (b) Offline case.

Fig. 2: Performance of KG with a parametric VFA.



(a) Online case. (b) Offline case.

Fig. 3: Performance of ε-greedy with a parametric VFA.

Figure 3 shows the performance of ε-greedy. The trajectory
of both offline and online performance is similar to that of KG.
However, ε-greedy is slower to collect useful information. We
see that online performance hits its minimum at 30 iterations,
whereas for both versions of KG this minimum occurs at 10
iterations. Afterward, performance steadily improves, though
at a slower rate than online KG. The offline performance of ε-
greedy is also characterized by a sharp drop at the beginning,
whereas offline KG never produces a policy that loses money,
even in the early exploration phase. These results indicate
that KG not only explores, but does so more efficiently and
systematically than the ε-greedy heuristic.

Finally, Figure 4 shows the policy induced by offline KG

after 150 training iterations as a function of charge level and
price for both types of VFA. The decision rules are somewhat
similar: we always discharge the battery if both the charge
level and the price are high, and we tend to charge (if possible)
when the price is low. However, the lookup table VFA sets a
much lower threshold for charging the battery. For Pn = 20
and an empty battery, we charge much more under the
parametric VFA. In fact, the parametric VFA determines a very
clear and intuitive threshold: we charge if the price is below the
mean of 35, and discharge if the price is higher. In comparison,
the lookup table VFA appears to be too eager to discharge the
battery when the price is too low, leading to lower revenues.

(a) Parametric VFA. (b) Lookup table.

Fig. 4: Policy induced by offline KG for each type of VFA.



These results suggest that parametric VFAs, when properly
tuned, can capture the problem behaviour more accurately
and quickly than lookup tables. An important advantage of
this approach is that the covariance structure is automatically
created using the information that we collect, and we do not
need to rely on heuristic distance-based covariances, as in the
lookup table case.

V. CONCLUSION

We have proposed a policy for Bayesian active learning
with parametric value function approximations. We show how
a Bayesian belief structure can be used in conjunction with
a parametric VFA, and apply the knowledge gradient concept
from [29] to this setting. The resulting ADP technique requires
less disk space and computational time than a lookup table
approach, and yields good performance on an energy storage
problem. Our experimental results show that the KG policy
finds a good balance between exploration and exploitation
more efficiently than a traditional ε-greedy heuristic. We
believe that the extension to parametric VFAs underscores the
versatility of the KG concept as a general approach to the
exploration/exploitation challenge. Future work will consider
non-parametric approximations, which may be useful for prob-
lems where it is difficult to find suitable basis functions.
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